154 research outputs found

    Absence of nontrivial solutions for a class of partial differential equations and systems in unbounded domains

    Get PDF
    In this paper, we are interested in the study of the nonexistence of nontrivial solutions for a class of partial differential equations, in unbounded domains. This leads us to extend these results to systems of m equations. The method used is based on energy type identities

    Micro-crystalline inclusions analysis by PIXE and RBS

    Get PDF
    A characteristic feature of the nuclear microprobe using a 3 MeV proton beam is the long range of particles (around 70 \mu m in light matrices). The PIXE method, with EDS analysis and using the multilayer approach for treating the X-ray spectrum allows the chemistry of an intra-crystalline inclusion to be measured, provided the inclusion roof and thickness at the impact point of the beam (Z and e, respectively) are known (the depth of the inclusion floor is Z + e). The parameter Z of an inclusion in a mineral can be measured with a precision of around 1 \mu m using a motorized microscope. However, this value may significantly depart from Z if the analyzed inclusion has a complex shape. The parameter e can hardly be measured optically. By using combined RBS and PIXE measurements, it is possible to obtain the geometrical information needed for quantitative elemental analysis. This paper will present measurements on synthetic samples to investigate the advantages of the technique, and also on natural solid and fluid inclusions in quartz. The influence of the geometrical parameters will be discussed with regard to the concentration determination by PIXE. In particular, accuracy of monazite micro-inclusion dating by coupled PIXE-RBS will be presented

    Coordinated Analyses of Mineral-organic Matter Associations in Interplanetary Dust Particles

    Get PDF
    Little is known about the timing and processes involved in the incorporation of organic matter with inorganic materials in early Solar System bodies. Recently, X-ray absorption near-edge spectroscopy (XANES) studies showed carbon-rich rims surrounding individual mineral grains in anhydrous IDPs [1,2]. These carbonaceous rims are believed to have formed prior to parent body formation and likely served to bond mineral grains during accretion into larger aggregates. We are exploring the nature of these carbonaceous rims through coordinated analyses of their chemistry, mineralogy, spectroscopy and isotopic characteristics. Here we report our preliminary mineralogical observations

    Characterization of 81P/Wild 2 Particles C2067,1,111,6.0 and C2067,1,111,8.0

    Get PDF
    The concentrations of C and N in cometary particles are of interest in characterizing the regions where comets formed. One aim of this work is to analyze enough Stardust particles to draw meaningful statistical conclusions about their inventories of C and N. Toward that end we report recent studies of Stardust particles and related materials

    PloS one

    Get PDF
    AIMS: Portal hypertension characterized by generalized vasodilatation with endothelial dysfunction affecting nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) has been suggested to involve bacterial translocation and/or the angiotensin system. The possibility that ingestion of probiotics prevents endothelial dysfunction in rats following common bile duct ligation (CBDL) was evaluated. METHODS: Rats received either control drinking water or the probiotic VSL#3 solution (50 billion bacteria.kg body wt(-)(1).day(-)(1)) for 7 weeks. After 3 weeks, rats underwent surgery with either resection of the common bile duct or sham surgery. The reactivity of mesenteric artery rings was assessed in organ chambers, expression of proteins by immunofluorescence and Western blot analysis, oxidative stress using dihydroethidium, and plasma pro-inflammatory cytokine levels by flow cytometry. RESULTS: Both NO- and EDH-mediated relaxations to acetylcholine were reduced in the CBDL group compared to the sham group, and associated with a reduced expression of Cx37, Cx40, Cx43, IKCa and SKCa and an increased expression of endothelial NO synthase (eNOS). In aortic sections, increased expression of NADPH oxidase subunits, angiotensin converting enzyme, AT1 receptors and angiotensin II, and formation of ROS and peroxynitrite were observed. VSL#3 prevented the deleterious effect of CBDL on EDH-mediated relaxations, vascular expression of connexins, IKCa, SKCa and eNOS, oxidative stress, and the angiotensin system. VSL#3 prevented the CBDL-induced increased plasma TNF-alpha, IL-1alpha and MCP-1 levels. CONCLUSIONS: These findings indicate that VSL#3 ingestion prevents endothelial dysfunction in the mesenteric artery of CBDL rats, and this effect is associated with an improved vascular oxidative stress most likely by reducing bacterial translocation and the local angiotensin system

    Ion beam analysis of fusion plasma-facing materials and components : facilities and research challenges

    Get PDF
    Following the IAEA Technical Meeting on ‘Advanced Methodologies for the Analysis of Materials in Energy Applications Using Ion Beam Accelerators’, this paper reviews the current status of ion beam analysis (IBA) techniques and some aspects of ion-induced radiation damage in materials for the field of materials relevant to fusion. Available facilities, apparatus development, future research options and challenges are presented and discussed. The analysis of beryllium and radioactivity-containing samples from future experiments in JET or ITER represents not only an analytical but also a technical challenge. A comprehensive list of the facilities, their current status, and analytical capabilities comes alongside detailed descriptions of the labs. A discussion of future issues of sample handling and the current status of facilities at JET complete the technical section. To prepare the international IBA community for these challenges, the IAEA technical meeting concludes the necessity for determining new nuclear reaction cross-sections and improving the inter-laboratory comparability by defining international standards and testing these via a round-robin test.Peer reviewe

    C/N and other Elemental Ratios of Chondritic Porous IDPS and a Fluffy Concordia Micrometeorite

    Get PDF
    Chondritic porous interplanetary dust particles (CP-IDPs) may be cometary in origin [1], as may ultracarbona-ceous (UCAMMs) [2] and 'fluffy' [3] micrometeorites from the Concordia collection. They are all rich in organics, which can rim grains and may have helped glue grains together during accretion [4]. The organics also contain nitrogen the input of which to Earth has potential biological importance. We report C/N ratios, and other properties of CP-IDPs and a Concordia fluffy microme-teorite

    Grape-Derived Polyphenols Improve Aging-Related Endothelial Dysfunction in Rat Mesenteric Artery: Role of Oxidative Stress and the Angiotensin System

    Get PDF
    Aging is characterized by the development of an endothelial dysfunction, which affects both the nitric oxide (NO)- and the endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxations, associated with vascular oxidative stress and the activation of the angiotensin system. This study investigated whether red wine polyphenols (RWPs), antioxidants and potent stimulators of NO- and EDHF-mediated relaxations improve aging-related endothelial dysfunction, and, if so, examined the underlying mechanism. Mesenteric artery reactivity was determined in organ chambers, vascular oxidative stress by dihydroethidine and MitoSOX staining, and expression of target proteins by immunohistochemical staining. Control young rats (16 weeks) received solvent (ethanol, 3% v/v), and middle-aged rats (46 weeks) either solvent or RWPs (100 mg/kg/day) in the drinking water. The acetylcholine-induced endothelium-dependent NO component was slightly reduced whereas the EDHF component was markedly blunted in rings of middle-aged rats compared to young rats. The endothelial dysfunction was associated with oxidative stress, an upregulation of angiotensin II and AT1 receptors and a down-regulation of SKCa, IKCa, and angiotensin converting enzyme. Intake of RWPs for either one or two weeks improved the NO and the EDHF components of the relaxation, and normalized oxidative stress, the expression of SKCa, IKCa and the components of the angiotensin system. The protective effect of the 2-week RWPs treatment persisted for one and two weeks following stopping intake of RWPs. Thus, intake of RWPs caused a persistent improvement of the endothelial function, particularly the EDHF component, in middle-aged rats and this effect seems to involve the normalization of the expression of SKCa, IKCa and the angiotensin system

    Nonleptonic Λb\Lambda_b decays to Ds(2317)D_s(2317), Ds(2460)D_s(2460) and other final states in Factorization

    Full text link
    We consider nonleptonic Cabibbo--allowed Λb\Lambda_b decays in the factorization approximation. We calculate nonleptonic decays of the type ΛbΛcP \Lambda_b \to \Lambda_c P and ΛbΛcV \Lambda_b \to \Lambda_c V relative to BˉdD+P\bar{B}_d \to D^+ P and BˉdD+V\bar{B}_d \to D^+ V where we include among the pseudoscalar states(P) and the vector states(V) the newly discovered DsD_s resonances, Ds(2317)D_s(2317) and Ds(2460)D_s(2460). In the ratio of Λb\Lambda_b decays to Ds(2317)D_s(2317) and Ds(2460)D_s(2460) relative to the Bˉd\bar{B}_d decays to these states, the poorly known decay constants of Ds(2317)D_s(2317) and Ds(2460)D_s(2460) cancel leading to predictions that can shed light on the nature of these new states. In general, we predict the Λb\Lambda_b decays to be larger than the corresponding Bˉd\bar{B}_d decays and in particular we find the branching ratio for ΛbΛcDs(2460)\Lambda_b \to \Lambda_c D_s(2460) can be between four to five times the branching ratio for BˉdD+Ds(2460)\bar{B}_d \to D^+ D_s(2460). This enhancement of Λb\Lambda_b branching ratios follows primarily from the fact that more partial waves contribute in Λb\Lambda_b decays than in Bˉd\bar{B}_d decays. Our predictions are largely independent of model calculations of hadronic inputs like form factors and decay constants.Comment: 16 pages LaTe

    Humic Substances Enhance Chlorothalonil Phototransformation via Photoreduction and Energy Transfer

    Get PDF
    ABSTRACT: The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet–visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300–450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances
    corecore